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Abstract—Functional genomics aims on identification of gene
function that is achieved by reducing or completely disrupting the
normal gene expression. Over a decade RNAI serves as a magic
bullet in this field. Sequence specific nuclease (SSN) is a potential
tool for mediating genome alteration with high precision. ZNF,
TALEN and CRISPR are the popular genome editing tools. The
CRISPR/ Cas 9 system, basically a type Il bacterial immune system,
is a very powerful site specific genome editing tool that can be
applied for genome editing of nearly all organisms. Single guide RNA
(sg RNA) is complementary to a target gene and is anchored by
a PAM that guides the cas 9 nuclease to cleave the target sequence
which is subsequently repaired by non-homologous end joining
(NHEJ) or homology-directed repair (HDR) mechanisms. This
review illustrates the mechanism and potentiality of CRISPR/Cas 9
system as a tool for plant genome editing to meet current challenges
in agriculture.
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1. INTRODUCTION

Identification of gene function is ambiguous for manipulation
of gene expression which is achieved by reducing or
completely disrupting its normal expression. Over a decade
RNAI serves as a magic bullet in this field. Targeted genome
editing with site specific nucleases opens an efficient and
precise pathway for reverse genetics, genome engineering and
targeted transgene integration experiments. The revolutionary
invention of CRISPR/Cas9 technology opens a new era of
genome editing. The CRISPR/Cas system is basically a
prokaryotic immune system that offers a type of acquired
immunity against invading bacteriophage or plasmids by
degrading the exogenous gene!'l. CRISPR stands for clustered
regularly interspaced short palindromic repeats and Cas9 is a
CRISPR associated nuclease. These 29 nucleotide repeat
sequences separated by various 32-nt spacer sequences were
first reported from iap gene in Escherichia coli as early as
19871, Later, they were found in 40% of sequenced bacterial
genomes and 90% of archaeal”’. In 2005, the CRISPR spacer
sequence was found to be highly homologous with exogenous
sequences from bacterial plasmids and phages that enable
CRISPR to cut foreign DNAP), The CRISPR/Cas system was
developed as a genome editing tool in 2013. CRISPR/Cas

requires a short guide RNA sequence to recognize the target
loci and the end nuclease activity of Cas cleaves the target
DNA by forming DNA double-strand breaks (DSBs) followed
by stimulating DNA repair mechanisms in Vvivo, resulting in
gene mutation(e.g., insertion, deletion and replacement).

Compared with previously developed gene editing tools zinc
finger nucleases(ZFNs)®”) and transcription nactivator—like
effector nucleases (TALENs)®” CRISPR/Cas is more
efficient and it can edit multiple target genes simultaneously.
Based on the advantages, applications of CRISPR/Cas are
rapidly developing. This technology will have an impact on
the progress of medicine and agriculture fields as it allows the
direct and fast genetic modifications of model systems used in
these fields.

Among the three types of CRISPR/Cas system!”, most
biological research is focused on the application of type II
CRISPR/Cas system. The system requires CRISPR-associated
9 protein, crRNA (CRISPR RNA), tracrRNA (transactivating
crRNA) and RNase III (Ribonuclease III) to edit target genes.
Single guide RNA is formed by fusing crRNA to tracrRNA!"",
In 2013 CRISPR/Cas 9 system was applied successfully for
target specific gene editing in mammels''>'*. Then
CRISPR/Cas 9 system was succefully implemented in plants
that brings a revolution in plant molecular biology research!'
7l CRISPR/Cas9 has been rapidly developed and successfully
applied to alter metabolic pathways and improve crop quality
and drug development via gene mutation, gene silencing and
transcriptional regulation. The applications of type 11 CRISPR
have a tremendous impact on bioengineering and molecular
biology. This review combines the mechanism and application
of CRISPER/Cas9 system in plant genome editing as well as
in crop improvement with its advantages and future prospects.

2. IMPLICATION OF CRISPR/CAS9 SYSTEM FROM
BACTERIAL IMMUNITY TO GENOME EDITING:

Before 2013, the dominating genome editing tool was
ZNFU'81 and  TALEN®L  The latest ground-breaking
technology for genome editing is based on RNA-guided
engineered nucleases, which already hold great promise due to
their simplicity, efficiency and versatility. The most widely
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used system is the type II CRISPR/Cas9 system from
Streptococcus pyogenes!''l. The CRISPR/Cas systems can be
classified into types I, II, and III"'” with the type II system
requiring only the Cas9 nuclease to degrade DNA that has
sequence similarity with single guide RNA (sgRNA)?. It was
found that viruses are unable to infect archaeal cells having
sequence similarity with the own genome. CRISPR/Cas
systems are part of the adaptive immune system of bacteria
and archaea. The immunity is acquired by the integration of
short fragments of the invading DNA known as spacers
between two adjacent repeats at the proximal end of a
CRISPR locus. The spacer sequences of CRISPR were found
to be originated from phage genomes™ . The CRISPR arrays,
including the spacers, are transcribed during subsequent
encounters with invasive DNA and are processed into small
interfering crRNAs approximately 40 nt in length, which
combine with the tracrRNA to activate and guide the Cas9
nuclease™. This cleaves homologous double-stranded DNA
sequences known as protospacers in the invading DNAPY,
The presence of a conserved protospacer-adjacent motif
(PAM) downstream of the target DNA, which usually has the
sequence 5-NGG-3' is essential for cleavage!'!). Specificity is
provided by the so-called ‘seed sequence’ approximately 12
bases upstream of the PAM, which must match between the
crRNA and target DNA(Fig: 1 A).

The transition of the CRISPR/Cas system from biological
phenomenon to genome engineering tool came about when it
was shown that the target DNA sequence could be
reprogrammed simply by changing 20 nucleotides in the
crRNA and that the targeting specificity of the crRNA could
be combined with the structural properties of the tracrRNA in
a chimeric single guide RNA (gRNA), thus reducing the
system from three to two components''l. CRISPR/Cas9
cleaves foreign DNA via two components i.e, Cas9 and
sgRNA. Cas9 is a DNA endonuclease that can be isolated
from Brevibacillus laterosporus?!), Staphylococcus aureus®??,
Streptococcus  pyogenes™,  Streptococcus thermophilus®Y,
and among them the most widely used bacterium is
Streptococcus pyogenes. Cas9 contains two domains namely
HNH domain and RucV-like domain. The HNH domain cuts
the complementary strand of crRNA, while the RucV-like
domain cleaves the opposite strand of the double-stranded
DNA. The sgRNA is a synthetic RNA with a length of
about100nt. Its 5" end has a 20-nt sequence that acts as a guide
sequence to identify the target sequence accompanied by a
protospacer adjacent motif(PAM) sequence, which is often the
consensus NGG (N-any nucleotide; G-guanine).The loop
structure at the 3’end of the sgRNA can anchor the target
sequence by the guide sequence and form a complex with
Cas9, which cleaves the double- stranded DNA by forming
double-strand break (DSB) at that site (Fig: 1B).

Once a DSB is generated, the host DNA breakage machinery
activates and repairs the DNA double strand break with non-
homologous end-joining (NHEJ) or homology-directed repair
(HDR) mechanism (Fig.2). In NHEJ, the host cellular DNA

repair systems will tether the DNA double strand break by
random insertion or deletion of short stretches of
oligonucleotide bases. This mechanism results in the
disruption of the codon-reading frame followed by disrupting
the gene expression. In HDR, introduction of a segment of
DNA with regions having homology to the sequences flanking
both sides of the DNA double strand break will lead to the
repair by host machinery through the incorporation of the
extra segment of the DNA fragment'>.
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Fig. 1: Schematic diagram of CRISPR/Cas 9 system. A. In the
native system the Cas9 protein is guided by the crRNA that
has sequence similarity with target DNA and tracrRNA that
stabilizes the structure. The presence of PAM motif
downstream of the target DNA is the prerequisite for cleavage
by Cas9 B. Cas9 can be reprogrammed to cleave DNA by a
single guide RNA molecule, a chimera generated by fusing the
3’ end of the crRNA to the 5’ end of the tracrRNA with a loop.
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Fig. 2: Schematic diagram of genome editing with site specific
nuclease.Cas9 causes DSB that is repaired by either NHEJ or
HDR that disrupts or modifies the gene expression.
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Table 1 — Applications of the CRISPR/Cas9 system in plants
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3. APPLICATION OF GENOME EDITING WONDER
IN PLANTS:

CRISPR/Cas9 has been widely used in various organisms for
gene mutation, gene expression repression or activation and
epigenome editing. In plants, the application of CRISPR/Cas9
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is developing day by day. CRISPR/Cas9 has been rapidly
developed and successfully applied to plant biological
research for crop improvement (Table 1).

The major applications of CRISPR/Cas9 include gene
knockouts in organisms for identifying the function of single
or multiple gene targets (e.g., enzyme genes or micro RNAs)
via gene mutation. Research was done for investigating the
capability of CRISPR/Cas system as a genome editing tool in
Arabidopsis, tobacco, rice and sorghum®. In sweet orange
CsPDS (phytoene desaturase gene) gene was successfully
mutated by using Cas9/sgRNA via Xanthomonas citri subsp.
citri(Xcc)-facilitated agro-infiltration'”®. A geminivirus based
sgRNA delivery system was developed named as VIGE
(virus-based guide RNA delivery system for CRISPR/Cas9
mediated plant genome editing) for be used for transient
expression that targets NOPDS3 and NbIspH, which cause a
photo-bleaching phenotype when they are expressed in
tobacco®”. Through CRISPR/Cas9 system TaMLO (mildew
resistance locus)gene was successfully targeted in hexaploid
bread wheat™”. CRISPR/Cas9 is used to edit the HVPM19
gene in Hordeum vulgare and BolC.GA4.a in Brassica
oleracea via a transgenic system®'). CRISPR/Cas9 was
utilized to target miRNA (miR1514 and miR1509) in
soybean"®?. NHEJ-mediated CRISPR/Cas9 is a widely used
system for investigating the function of enzyme genes and
facilitating the expression of miRNAs.

Though HDR leads to precise gene knock-in or gene
replacement but success stories of CRISPR/Cas system for
gene editing with HDR is very less. The HDR-mediated
CRISPR/Cas9 system was successfully utilized to create
precise and heritable modifications in tobacco!'®, rice!®*),
Arabidopsis““, tomato®®,  maize® and soybean[36].
CRISPR/Cas9 is a powerful tool for transcriptional activation
or repression. An catalytically inactive Cas9 that is dCas9-
VP64 with gRNAs could activate the transcription of AtPAP1
(production of anthocyanin pigmentl) and miR319 2-,3-and7-
fold in Arabidopsis®®’.

4. ADVANTAGES OF THE CRISPR/CAS9 SYSTEM:

CRISPR/Cas system is more advantageous than ZNF and
TALEN. Like other genome editing tools, CRISPR/Cas9
system does not require any protein engineering or cloning
step. Any number of gRNAs can be produced by in vitro
transcription ~ using  two  complementary  annealed
oligonucleotides®. CRISPR/Cas9 system brings the genome
editing within the budget of any molecular biology laboratory.
Unlike ZFNs and TALENSs, the CRISPR/Cas9 system can
cleave methylated DNA. Approximately 70% of CpG/CpNpG
sites are methylated in plants, particularly the CpG islands
found in promoters and proximal exons™. Thus
CRISPR/Cas9 can be used as a versatile tool for plant genome
editing purpose. Multiplex editing with the CRISPR/Cas9
system requires the monomeric Cas9 protein and any number
of different sequence-specific gRNAs. In contrast, multiplex

editing with ZFNs or TALENs requires separate dimeric
proteins specific for each target site. These advantages of
CRISPR/Cas9 system make it most popular tool for genome
editing.

5. CRISPR/CAS9: THE FUTURE OF CROP GENETIC
IMPROVEMENT:

CRISPR/Cas9 is a promising tool for genome modification in
plants due to its simplicity, efficacy, high specificity and fewer
off-target effects. Genome editing can accelerate plant
breeding by introducing precise and predictable modifications
directly in elite cultivars or accessions, saving the time-
consuming backcrossing procedure in conventional breeding
schemes. CRISPR/Cas9 system can simultaneously edit
multiple traits. For the elimination of genes that negatively
regulates the grain quality and disease resistance, NHEJ-
mediated gene knockouts is the best implication of
CRISPR/Cas9 system leads to increase crop yield as well as
confer resistant to pathogens. The plants muted with
CRISPR/Cas9 system is not classified under genetically
modified crop as for target gene delivery it often uses
agroinfiltration, viral infection, or preassembled Cas9 protein-
sgRNA ribonucleoproteins transformation technologies'*”’.

6. CONCLUSION

CRISPR/Cas9 system has many advantages over other
genome editing tools by making reverse genetic screening
feasible and affordable to a genomic scale '), CRISPR/Cas9
can promote research on biosynthetic pathways and regulatory
mechanisms of effective components for identifying the
excellent germplasm in medicinal plants to develop
pharmaceutical botany. The main application of CRISPR/Cas9
system is for genome editing and transcriptional regulation.
Though there are reports on application of CRISPR/Cas
system for DNA-labelling and epigenome editing but it is not
applied in plants till date. It will be interesting to see
CRISPR/Cas9 application in plant DNA labelling using
fluorescent-labelled Cas9 protein and optimized gRNA and
epigenome editing by DNA methylation or histone
modifications in the future. Although the CRISPR/Cas9 can be
applied to plant genome editing, there are still certain
challenges like minimizing off-target effects, knowing the
influence of chromatin structure as well as side effects on
nearby genes, identifying the mechanisms involved in the
different effects of different sgRNAs on mutation efficiency
and recognizing the methods for efficient delivery in polyploid
plants. Further studies are needed for the improvement of
application of CRISPR/Cas9 system in plants to meet current
challenges in agriculture.
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